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M’ Introduction
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The On-Board Ground Inerting System (OBGI) is one of four
main system categories studied by the 2000 ARAC FTTHWG
Onboard Airplane Design Task Team. The Onboard team derived
a system architecture and studied the system size for a variety of
“modeled” aircraft center wing and auxiliary fuel tanks. In
addition, the Team performed additional analysis, in excess of the
Tasking Statement’s requirements, by determining the system size
for all fuel tanks. The team also defined the physical size and
weight of the multitude of components needed to support OBGI.
Finally, power and air consumption needs were defined.



’m/ Requirements
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e 8&7§§%?18Ct ncentratiom at Pushback:
» All applicable fuel tank ullage volumes are to have an oxygen
concentration of 10% maximum before the aircraft is pushed back

from the gate. This requirement allowed a direct comparison with the
ground based inerting design concept.

¢ Nitrogen as Inerting Agent.

» As required by the tasking statement, the Team only considered on-
board nitrogen gas inerting equipment.

¢+ Equipment Location.

» All equipment needed to inert the aircraft is installed on the airframe,
except for diagnostic equipment.

¢ Redundancy.

» The tasking statement encouraged a simple system with little or no
redundancy.
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» The mission scenarios that were used in the July 1998 ARAC
Fuel Tank Harmonization Working Group Report had turn
times listed for the various aircraft. The turn times can be seen
summarized in Figure below:

Pre-flight Time
Generic Alrcraft (Minutes)
Turbofan 20
Turboprop 20
Business Jet 45
Small 43
Medium 60
Large ai




Turn Around Times
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To ensure the turn times being used were representative of the aircraft in service

today, a survey was conducted of several major airlines. They were asked to
supply the times that they were currently using as part of their normal operations
today. Airlines that responded to the survey were Airborne, Aloha, America
West, British Airways, Continental, Delta, Northwest, Southwest, UPS, and

Virgin. A summary of the data collected can be seen in Figure below:
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¢ The Team made the decision to modify the Aircraft
turn times to the values seen in the figure below. These
values were used in the sizing of the components for the
various OBGI systems because the working group
concluded that they were representative of the in-

service fleet.
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> Initial Oxygen Concentration.

+ The starting oxygen content in the ullage is always 20.9%.

» Hydraulic Power Availability.

¢ The team assumed that hydraulic power to operate OBGI equipment was
not available while the aircraft was on the ground. To use hydraulic power
it would be necessary to upgrade the existing on-board systems. This
would in many cases be costly and difficult.

> Electrical Power Available From the Aircraft Gate.

¢+ The team assumed that sufficient ground power could be made available
to operate an OBGI system. This power could be made available from
either a ground cart or from a connection made directly to the terminal
electrical system. This would allow the on-board system to operate on the
ground without either the APU or aircraft engines operating.
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> Electrical Power Available From Aircraft Sources.

¢+ The team assumed for the design that sufficient aircraft power
could be made available to operate an OBGI system. This would
allow the on-board system to operate on the ground with either
the APU or aircraft engines operating. This source of power would
be used when gate power is not available.

» Compressed Air.

¢+ The availability of aircraft bleed air was assumed not to be
available at all times because some local laws prohibit engine or
APU operation at the gate. The assumption was made that an
alternate source of compressed air was required.

> Vent Systems Modifications.

+ It was assumed that necessary vent system modifications will be
made to prevent cross-venting during crosswind conditions.
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» System must have no effect on turn time
» System must be practical with today’s technology
» Equipment must fit in space available on most current aircraft
» The net change in safety parameters must be positive

» Failure of equipment must not cause a hazard which would
cause loss of life or loss of an aircraft

» Equipment should not require resources (power etc.) which
would cause a major system redesign on current aircraft

» Additional environmental emissions are acceptable to
environmental authorities

» Single failure of a critical system component must be
detectable

» System to be depot-level maintainable by the use of LRU’s of
manageable size
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» The main objective was to define system parameters, such as
cost, weight, performance and size, for comparison purposes
with OBIGGS systems and ground-based systems.

> System effectiveness was predicted using FAA-supplied
flammability exposure computer models, which were also used
by both the OBIGGS and ground-based teams.

» Define a system that would minimize the impact and required
changes for retrofit to existing aircraft and provide optimum
efficiency for new aircraft designs.

» Issues included on-board resources available to operate the
system, available space, weight, cost, and necessary aircraft
modifications.

» System efficiency, safety and failure protection were major
considerations: addition of components to the system.
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¢+ The most crucial issue was the power available to run
the system:

» On-board power is available on aircraft in several forms
¢ Pressurized air
¢+ Hydraulic power
¢+ Electricity.

» Each of the available air separation module (ASM)

technologies requires that pressurized air be supplied to the
ASM.

» System is required to convert the available power to airflow at
an elevated pressure for delivery to the ASM and subsequent
NEA delivery to the fuel tanks.

11
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» Pressurized Air Supply

¢+ Several ASM supply sources considered. Air pressurized to the outlet
pressure of APU allowing system operation when primary air source is not
available. A three-to-one (3:1) pressure ratio was chosen to match the most
common APU compressor ratio.

» Compressor and electric motor technologies:
+ Screw-type, positive displacement
¢+ Vane-type, positive displacement
¢+ Piston, positive displacement
¢+ Rotor dynamic (Radial, mixed flow, axial)
¢+ Free piston (diesel) engine
¢ Three-phase induction motor
¢ Brushless DC motors

¢+ Switched reluctance motors

12
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» Preconditioning:

¢+ Equipment was required to ensure that the air supplied to the
ASM is cooled and filtered; includes heat exchanger with cooling
fan and a coalescing filter.
» Air Separation:

¢+ Technologies: membrane, pressure swing adsorption (PSA), and
cryogenic distillation - operate at differing levels of efficiency,
require different amounts of pressurized air for a given condition.
NEA flow defined by tank size and time available.

> Distribution.

¢ Ensure delivery and adequate mixing - not be significantly
affected by the choice of ASM technology.

> Control.

+ Signals to operate the compressor, cooling system, and valves -
not be significantly affected by the choice of ASM technology.

13
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» Concepts Evaluated:

¢+ Concept 1: baseline concept.
¢+ Concepts 2 through 6 are similar with variations to the bleed air source.

¢+ Concept 7: improved ASM efficiency is achieved by applying vacuum to
the ASM waste port with an OEA eductor.

¢+ Concept 8: bleed air is used to assist an ullage gas recirculation system,
which draws air from the tank and flows it through the ASM and back to
tank.

¢+ Concept 9: similar to Concept 8 except bleed air is not used to assist the
recirculated flow.
> All concepts require conditioning by a heat exchanger and a
coalescing filter for temperature control and to remove free water.
Controller regulates the air supply temperature and to the ASM for
purity of NEA.
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Concept Development
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Concept Title Analysis Conclusion
Nao. [Fig. Ref.)
System Concepls
i Engine Blead «  Wiorks only when main engines on. Small part of the on -greund time. Rejected
Only + |mples a larger system.
{1.42-2) + Can tap off the bleed air gallery.
+ Expected to resultin a large ASM — superseded by 4 &6
2 APL Only +  Operational resticbions to use of AFU. Ground use of APU not allowed by Rejected
(1.42-2) some airport authorities. APU has no spare flow capacity on hiot days on
retrofit aircraft
« Larger system because of limited flow | pressure.
»  Superseded by 4 & & _
1 Air Cart Only #« DOnly available at the gate. Mot universally available. Additional ground Rejected
{1.42-2) equipment investment. Labor cost of connection.
#  Superseded by &
4 Engine APU & *« Restricted by availability unless ECS {Cabin Cooling) degraded, as protec- Rejected
Betrofit Ground Cart bon needed most on hot days: needs an excess of air to ECS packs.
{1.4.2-2) « Superseded by &
4 Engine APU & & Can design for required bleed capacity BUT still restricted by availability . Consider
Hew Ground Cart
{1.4.2-2)
5 Compressor. + Easierinstallation. Power may be restricted at gate. Increases size and Rejected
Electrically, waight. Less impact on ECS.
hydraulic or «  Spare Power is 10KW per engine, may be restncted on ground.
bleed-air driver #« Mot available on ground.
from the aicraft |+ Only useful to boost low pressurethigh flow Beed air.
pOWEr S0Ufces
(1.4.2-2)
Sa Compressor & Electrically driven from a ground powser supply. I power requirements are Consider
{1.42-2) within the rating of existing supplies provided at the gate, expected to be vi-
able.
[ Integrated Air + Combines the electric compressor with bleed air as an alternative source. Preferred
supply Gives the operator some flexibility in the event that a compressor fails as ei-
{1.42-2) ther an engine or APL can be mun if ambient condiions are such that the
Rammakbility risk is high.
7 AEM with educ- & An oplimization of ASM (membrane & PSA) Consider
tor or suction «  Eductor requires additional bleed air.
pumip «  Suction Pump requires integration with compressor.
{1.4.2-3)
& Closed Loop. « Smaller, reduced hydrocarbon emissions. Rejocted
Bleed air as- #«  Omly works with additional compressor. ASM has to be hydrocarbon com-
sisted pabible. Rk of contamination. Compressing fuel vapor air mix considerad
{1.4.2-4) a safety hazard. Unproven technology. Dependent on Bleed Air supply
a Closed Loop « Smaller, reduced hydrocarbon emissions. Rejected
{1.42-5) +  Only works with addibonal compressor. ASM has to be hydrocarbon com-
patible. Rk of contamination. Compressing fuel vapor air mix considered
a safelty hazard. Unproven technology.
ASM Technologies
Crycgenic Wiable ASM technology Consider
Membrane Wiable ASM technology Consider
PS4 Wiable ASM technology. Consider
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» The ullage was required to be inert to 10% O, at pushback
from the gate, for comparison with the ground-based system.
Parameters such as ASM efficiency and fuel tank volumes
were primary factors. The ASM performance determines the
amount of feed air needed to make the required amount of
NEA. Feed air quantity and temperature size the compressor
and the feed air heat exchanger.

» Primary tool used for determining the system performance
was the FAA inerting computer model. This analysis tool
determines flammability exposure of the fuel tank ullage.

» Key parameters to optimize the OBGI System components:
effect of feed pressure, NEA oxygen content, feed air
temperature, and turn-time.

19
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» The OBGI system NEA flow rate (therefore the system size,
cost, & weight) is directly proportional to the minimum
aircraft turn-time - dictates the time to operate the system.

»> Another key parameter is the ASM feed pressure. Because the
system can operate on engine or APU bleed air, it was sized
using the minimum pressure available from existing aircraft.
This had an effect on the size and weight of the ASM selected.

» System heat exchangers use ambient air to cool the hot ASM
feed air to the temperature that the ASM can tolerate. 111°F
ambient air temperature used as the worst-case ambient air
heat sink. PSA ASM feed air had to be cooled to 125°F.
Membrane ASMs operate efficiently at 180°F and were sized
accordingly. Operating the membrane ASMs at this
temperature requires more feed air than operating at cooler
temperatures.

20
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» The NEA flow rate required to inert the tank is a function of
the NEA purity generated by the system. The OBGI system
weight, volume, power consumption and cost results are based
on membrane NEA purity of 6.76% oxygen and PSA purity of
7.4% oxygen.

» Analysis was done to ensure there was not a high dependency
of system weight and size on NEA concentration.

¢+ Performed several sizing iterations using the inerting model and
only varying the NEA concentration. Through the entire range of
purity, the weight of the system changed only 5%.

+ Savings minimal and overall the fleet-wide savings considered
negligible.

21



Parametric Sizing

SLAWY

Aero Companies

OBGIS NEA Flow vs. Fuel Tank Volume and
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OBGIS NEA Flow vs. System Volume
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OBGIS NEA Flow vs. System Power Required
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OBGI - Center Wing Tank
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¢+ Flammability Exposure

» Flammability exposure for each of the generic aircraft types
was determined for each fuel tank type by simulating 5,000
random flights. Both the PSA and membrane ASM systems
were evaluated based on the system sizing that ensured tanks
were inert at pushback from the gate for all ground scenarios.

» Flammability exposure results for the OBGI systems are
shown in The following Figures.
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¢+ Flammability Exposure

» Total flammability exposure represents the total flight and ground

time spent flammable and not inert as a percentage of the total flight
and ground time.

The portion of the total flammability exposure corresponding to gate
time, taxi out, takeoff and climb segments were separately summed, to
allow for direct comparisons of each inerting option in the portion of
the mission where the risk of an explosion was higher. The FAA
flammability model conservatively uses sea level criteria at altitude;
total exposure is not necessarily the best measure for comparing
overall performance between inerting system types.

As an example, a one-percent reduction in flammability exposure
during cruise does not represent the same benefit as a one-percent
reduction on the ground.
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* Weight
» The weight of the major components was derived empirically,
and by detail design:
¢ ASM’s
¢+ Compressor assembly
¢+ Heat exchanger & cooling fan.
» Other components weights supplied by component suppliers:
¢+ Filters

Valves

<&

&

Ducting

<&

Wiring

<&

Installation hardware
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¢ Volume
» The volume of each component in the system derived from
performance requirements
¢+ Flow
¢ Pressure
Heat load
Purity

<&

<&

» System volume used to determine whether it is practical to fit
equipment on board an aircraft.

¢+ Determines space required for new aircraft design

¢+ Determines whether space available and environment is
acceptable to mount the equipment onto an existing aircraft.

¢+ Evaluates whether the existing fleet may be retrofitted with
current practical considerations
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¢+ Power requirements

» Determine power needs of compressor, cooling fans and other
electrically powered equipment

» Determine air power requirements for system operating in
back-up mode using APU or engine bleed air.

> Assess capability of existing aircraft equipment to
accommodate power, including wire size, electrical connection
power capacity

> Allows evaluation of capacity of existing gate power to operate
the system.
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+ Reliability
» Component reliability determined using similarity data from
existing equipment.
¢ Cost Data
» Acquisition
¢+ Assumptions
» Design and certification
> Installation
» Operating

> Maintenance

35



W’ Application

§w Considerations

Aero Companies

¢ System Safety
» OEA - rich waste gas
» NEA concentration at vent outlet
» Additional electrical wiring

> Potential increased fuel tank pressure during refuel failure
condition.

» High component temperatures

> Potential system leaks
¢+ High temperature compressor discharge
¢+ NEA leaks in confined space
¢+ OEA leaks in confined space
¢ Fuel vapor back-flow through ASM

» Component failure
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¢+ [Installation

Application types:

» New aircraft design

» Frozen aircraft design - not yet in production
» In production aircraft

» Out of production aircraft

37
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Application
Considerations

¢ Pressurized areas

> Forward of aft ulkhead

» Cargo bay
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The hybrid On-Board Ground Inerting System (OBGIS) is one of four
main system categories studied by the 2000 ARAC FTIHWG Onboard
Airplane Design Task Team. The term ‘hybrid’, as used here, refers to
a potentially smaller system that leverages additional ground time
available to operate the system. The Onboard team considered a
similar system architecture to that of the baseline OBGI, and studied
the system size for a variety of “modeled” aircraft center wing and
auxiliary fuel tanks. The team also defined the physical size and weight
of the multitude of components needed to support the hybrid OBGI.
Finally, power and air consumption needs were defined.
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» The Team defined a practical system for both OBGI and a
hybrid OBGI, featuring available technology and components.

» Available power / sources and aircraft turn-around times were
the main factors in system definition.

» System sizing for the 6 aircraft sizes / types considered,
concluded with performance data for those aircraft.

» Parametric data was provided to allow scaling to other aircraft
sizes / parameters

» Flammability exposure performance charts were developed for
comparison with other methods of fuel tank explosion
protection.

» Flammability exposure for the systems showed a significant
reduction, compared to heated center fuel tanks.

» The hybrid system showed a marginal performance

improvement compared to the baseline system.
45
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